Algebra, Calculus \& Probability Refresher MSc Maths Skills

Geraint Palmer
Room: M/1.29
palmergi1@cardiff.ac.uk

Last updated September 29, 2017

Algebra

Numbers

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Rationals:

$$
\mathbb{Q}=\left\{a \mid \exists p, q \in \mathbb{Z} \text { for which } a=\frac{p}{q}\right\}
$$

- Real numbers:

$$
\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

Exponents

For $a, b \in \mathbb{R}^{+}, x, y \in \mathbb{R}$:

1. $a^{x} a^{y}=a^{x+y}$
2. $a^{0}=1$
3. $a^{-x}=\frac{1}{a^{x}}$
4. $\left(a^{x}\right)^{y}=a^{x y}$
5. $a^{x} b^{x}=(a b)^{x}$
6. $a^{\frac{1}{2}}=\sqrt{a}$

Logarithms

$$
\begin{gathered}
\log _{a} a^{b}=b \\
3^{x}=81 \Leftrightarrow x=\log _{3} 81=4
\end{gathered}
$$

Inequalities

Increasing \& decreasing functions:

Inequalities

Solve:

$$
5-2 x \geq 13
$$

Inequalities

Solve:

$$
5-2 x \geq 13
$$

$$
\begin{aligned}
5-2 x-5 & \geq 13-5 \\
-2 x & \geq 8 \\
-2 x \times \frac{1}{-2} & \leq 8 \times \frac{1}{-2} \quad \text { apply decreasing } f \\
x & \leq-4
\end{aligned}
$$

Functions

Evaluate the function f when $a=4, b=2, c=-5$:

$$
f(a, b, c)=\frac{a}{b}+4 c-a^{2} c+10(a+b)
$$

Functions

Evaluate the function f when $a=4, b=2, c=-5$:

$$
f(a, b, c)=\frac{a}{b}+4 c-a^{2} c+10(a+b)
$$

Solution:

$$
\begin{aligned}
f(4,2,-5) & =\frac{4}{2}+(4 \times-5)-\left(4^{2} \times-5\right)+10(4+2) \\
& =2-20-(16 \times-5)+10(6) \\
& =2-20+80+60 \\
& =122
\end{aligned}
$$

Coordinates in the plane

Right handed Cartesian axes:

For $P=(x, y), x / y$ is called the abscissa / ordinate of P.

Graphs

If x and y connected by an equation, then this relation can be represented by a curve or curves in the (x, y) plane which is known as the graph of the equation.

$$
y=x^{3}
$$

Graphs

Graph of a straight line:

$$
y=m x+c
$$

- m is called the gradient of the line.
- c is called the y-intercept of the line.

Exercise

Find the equation for the line going through the points $\{(0.5,3),(4,1.1)\}$:

Solution

General form of $y=m x+c$ through $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$:

$$
\left.\begin{array}{l}
y_{1}=m x_{1}+c \\
y_{2}=m x_{2}+c
\end{array}\right\} \Rightarrow m\left(x_{1}-x_{2}\right)=y_{1}-y_{2}
$$

which gives:

$$
\begin{aligned}
m & =\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \\
c & =\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}
\end{aligned}
$$

Solution

So for $\left(x_{1}, y_{1}\right)=(0.5,3)$ and $\left(x_{2}, y_{2}\right)=(4,1.1)$ we have:

$$
\begin{gathered}
m=\frac{1.9}{-3.5} \approx-0.54 \\
c=\frac{11.45}{3.5} \approx 3.27
\end{gathered}
$$

Exercise

Where does the line $y=-0.54 x+3.27$ intersect the y-axis and the x-axis?

Exercise

Where does the line $y=-0.54 x+3.27$ intersect the y-axis and the x-axis?
This is equivalent to solving:

$$
y=-0.54 \times 0+3.27
$$

and

$$
0=-0.54 x+3.27
$$

Solving Linear Equations

In linear equations are solved by multiplying or adding various constants.

$$
\begin{array}{rlr}
0=-0.54 x+3.27 & \Leftrightarrow 0-3.27 & =(-0.54 x+3.27)-3.27 \\
& \Leftrightarrow-3.27 & =-0.54 x \\
& \Leftrightarrow-3.27 \times \frac{1}{-0.54} & =0.54 x \times \frac{1}{-0.54} \\
& \Leftrightarrow 6.06 &
\end{array}
$$

Quadratic

A "quadratic" is an expression of the form:

$$
a x^{2}+b x+c
$$

- a is called the quadratic coefficient,
- b is called the linear coefficient,
- c is called the constant term or free term.

Quadratic

Solving a Quadratic Equation

General solution of the equation:

$$
a x^{2}+b x+c=0
$$

is given by:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Exercise

Solve the equation:

$$
3 x^{2}-\frac{3}{2} x-2=0
$$

Solution

From the previous formula we have:

$$
\begin{aligned}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \Leftrightarrow x=\frac{\frac{3}{2} \pm \sqrt{\left(\frac{3}{2}\right)^{2}-4 \times 3 \times(-2)}}{2 \times 3} \\
& \Leftrightarrow x=\frac{\frac{3}{2} \pm \sqrt{\frac{9}{4}+24}}{6} \\
& \Leftrightarrow x=\frac{3}{12} \pm \frac{\frac{1}{2} \sqrt{9+96}}{6} \\
& \Leftrightarrow x=\frac{1}{4} \pm \frac{\sqrt{105}}{12}
\end{aligned}
$$

Exercise

Solve the equation:

$$
4 x^{2}-2 x+10=3
$$

Solution

From the previous formula we have:

$$
\begin{aligned}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \Leftrightarrow x=\frac{2 \pm \sqrt{2^{2}-4 \times 4 \times 7}}{2 \times 4} \\
& \Leftrightarrow x=\frac{2 \pm \sqrt{-108}}{8} \\
& \Leftrightarrow x=\frac{2 \pm \sqrt{i^{2} 108}}{8} \\
& \Leftrightarrow x=\frac{2 \pm i \sqrt{3 \times 36}}{8} \\
& \Leftrightarrow x=\frac{2 \pm 6 i \sqrt{3}}{8}=\frac{1}{4} \pm \frac{3}{4} i \sqrt{3}
\end{aligned}
$$

Complex Numbers

$$
i^{2}=-1
$$

Complex numbers:

$$
\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}
$$

If $z=a+i b$:

- a is the real part of z.
- b is the imaginary part of z.

Solving Systems of Equations

A system of equations is a collection of equations involving the same set of variables. For example:

$$
\begin{aligned}
& 3 x+2 y=1 \\
& 2 x-2 y=-2
\end{aligned}
$$

Various techniques can be used to solve such a problem.

Solution

First equation gives:

$$
3 x+2 y=1 \Rightarrow x=\frac{1-2 y}{3}
$$

Substituting in to second equation gives:

$$
2\left(\frac{1-2 y}{3}\right)-2 y=-2
$$

which implies:

$$
y=\frac{4}{5}
$$

Substituting in to our expression for x we get:

$$
x=-\frac{1}{5}
$$

Shorthand notation

- Summation:

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

- Multiplication:

$$
\prod_{i=1}^{n} a_{i}=a_{1} \times a_{2} \times a_{3} \times \cdots \times a_{n}
$$

Examples

- Summation:

$$
\begin{aligned}
\sum_{i=1}^{4} i \times 2^{i} & =1 \times 2+2 \times 2^{2}+3^{3}+4 \times 2^{4} \\
& =2+8+3 \times 8+4 \times 16=98
\end{aligned}
$$

- Multiplication:

$$
\prod_{k=1}^{3} k^{2}=1 \times 2^{2} \times 3^{2}=36
$$

Proof by Induction

Technique often used to prove algebraic relationships. Basic idea:

- Prove that something is true at the start.
- Prove that if something is true at point k then it is true at point $k+1$.

Proof by Induction

Technique often used to prove algebraic relationships. Basic idea:

- Prove that something is true at the start.
- Prove that if something is true at point k then it is true at point $k+1$.

Exercise

Prove that:

$$
\sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

Solution

- True for $n=0$?:

$$
\sum_{i=0}^{0} i=0 \text { and } \frac{n(n+1)}{2}=0
$$

Solution

- True for $n=0$?:

$$
\sum_{i=0}^{0} i=0 \text { and } \frac{n(n+1)}{2}=0
$$

- If true for $n=k$, true for $n=k+1$?:

$$
\begin{aligned}
\sum_{i=0}^{k+1} i & =\sum_{i=0}^{k} i \\
& =\frac{k(k+1)}{2}+k+1 \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Infinite Sums

$$
\begin{gathered}
\sum_{k=0}^{\infty} a^{k}=\frac{a}{1-a} \\
\sum_{k=0}^{\infty} k a^{k}=\frac{a}{(1-a)^{2}} \\
\sum_{k=0}^{\infty} \frac{a^{k}}{k!}=e^{a}
\end{gathered}
$$

https://en.wikipedia.org/wiki/List_of_mathematical_series

Infinite Sums

$$
\begin{aligned}
S & =\sum_{k=0}^{\infty} a^{k} \\
S & =a^{0}+a^{1}+a^{2}+a^{3}+a^{4}+\ldots \\
a S & =a^{1}+a^{2}+a^{3}+a^{4}+a^{5}+\ldots
\end{aligned}
$$

Consider S - $a S$:

$$
\begin{aligned}
S-a S & =a^{0} \\
S-a S & =1 \\
S(1-a) & =1 \\
S & =\frac{1}{(1-a)}
\end{aligned}
$$

Calculus

Functions

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Functions

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

- We usually consider functions for which the sets D and E are sets of real numbers.
- The set D is called the domain of the function.
- The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.
- A symbol that represents an arbitrary number in the domain of a function f is call an independent variable.
- A symbol that represents a number in the range of f is called a dependent variable.

Example

$$
f(x)=3 x^{3}-4 x-4
$$

Tangent Curves

The tangent line to the curve $y=f(x)$ at the point $P=(a, f(a))$ is the line through P with gradient:

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Tangent Curves

Derivative

The derivative of a function f at a number a, denoted by $f^{\prime}(a)$ is:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Derivative

The derivative of a function f at a number a, denoted by $f^{\prime}(a)$ is:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

For polynomials:

$$
\begin{aligned}
f & =x^{n} \\
\Longrightarrow & f^{\prime}=n x^{n-1}
\end{aligned}
$$

Exercise

Find the derivative of

$$
f(x)=x^{2}-3 x+2
$$

at $x=6$.

Solution

$$
\begin{array}{lll}
f(x)=x^{2} & -3 x & +2 \\
f(x)=1 \times x^{2} & -3 \times x^{1} & +2 \times x^{0} \\
& & \\
f^{\prime}(x)=1 \times 2 \times x^{2-1}-3 \times 1 \times x^{1-1}+2 \times 0 \times x^{0-1} \\
f^{\prime}(x)=2 x^{1} & -3 x^{0} & +0 \\
f^{\prime}(x)=2 x & -3 & \\
& & \\
f^{\prime}(6)=2 \times 6 & -3 \\
f^{\prime}(6)=9 & &
\end{array}
$$

Rules of Differentiation

- The Power Rule:

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

- The Constant Multiple Rule:

$$
\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))
$$

- The Sum Rule:

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime}
$$

Rules of Differentiation

- The Product Rule:

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

- The Quotient Rule:

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

The Chain Rule

If $f(g(x))=f \circ g:$

$$
(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}
$$

Exercise

Differentiate $F(x)=\sqrt{x^{2}+1}$.

Solution

If we let $f(x)=\sqrt{x}=x^{\frac{1}{2}}$ and $g(x)=x^{2}+1$ then we have:

$$
f^{\prime}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}
$$

and

$$
g^{\prime}=2 x
$$

Using the Chain Rule we have:

$$
\begin{aligned}
F^{\prime}(x) & =\left(\frac{1}{2 \sqrt{x^{2}+1}}\right)(2 x) \\
& =\frac{x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Table of Derivatives

$$
\begin{aligned}
\frac{d}{d x} \sin (x) & =\cos (x) \\
\frac{d}{d x} \cos (x) & =-\sin (x) \\
\frac{d}{d x} \tan (x) & =\sec ^{2}(x)
\end{aligned}
$$

http://www.math. wustl.edu/~freiwald/131derivativetable.pdf

Natural Exponential Function

The mathematical constant e can be defined as the real number such that:

$$
\frac{d}{d x} e^{x}=e^{x}
$$

Natural Logarithm

$$
\begin{gathered}
\ln x=\log _{e} x \\
y=e^{x} \Leftrightarrow x=\ln y
\end{gathered}
$$

Logarithms in Statistics

A standard procedure used when analysing data is to transform with log. Here we compare populations and areas of the countries of the world:

Logarithms in Statistics

A standard procedure used when analysing data is to transform with log. Here we compare populations and areas of the countries of the world:

Area under a graph

Fundamental Theorem of Calculus

Let f, F be continuous on $[a, b]$ then:

1. If $F(x)=\int_{a}^{x} f(t) d t$ then $F^{\prime}=f$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)$

Fundamental Theorem of Calculus

Let f, F be continuous on $[a, b]$ then:

1. If $F(x)=\int_{a}^{x} f(t) d t$ then $F^{\prime}=f$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)$

$$
\int f(x) d x=F(x) \text { means } \frac{d}{d x} F=f
$$

Tables of Indefinite Integrals

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad(n \neq-1) \\
& \int c f(x) d x=c \int f(x) d x \\
& \int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x
\end{aligned}
$$

http://integral-table.com/downloads/single-page-integral-table.pdf

Exercise

Calculate:

$$
\int x^{2}+\sin (x) d x
$$

Exercise

Calculate:

$$
\int x^{2}+\sin (x) d x
$$

$$
\int x^{2}+\sin (x) d x=\frac{x^{3}}{3}-\cos (x)+C
$$

Integration by Parts

If $u=f(x)$ and $v=g(x)$:

$$
\int u d v=u v-\int v d u
$$

Exercise

Calculate:

$$
\int x \cos (x) d x
$$

Solution

Letting $u=x$ and $d v=\cos (x) d x$ we have $d u=d x$ and $v=\sin (x)$, thus:

$$
\begin{aligned}
\int x \cos (x) d x & =\int u d v=u v-v d u \\
& =x \sin (x)-\int \sin (x) d x \\
& =x \sin (x)+\cos (x)+C
\end{aligned}
$$

The Substitution Rule

If $u=g(x)$ then:

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Exercise

Calculate:

$$
\int x^{3} \cos \left(x^{4}+2\right) d x
$$

Solution

Letting $u=x^{4}+2$, we have $d u=4 x^{3} d x$, thus:

$$
\begin{aligned}
\int x^{3} \cos \left(x^{4}+2\right) d x & =\int \cos (u) \frac{1}{4} d u \\
& =\frac{1}{4} \int \cos (u) d u \\
& =\frac{1}{4} \sin (u)+C \\
& =\frac{1}{4} \sin \left(x^{4}+2\right)+C
\end{aligned}
$$

Probability

Random Variables

In trials where the outcome is numerical, the outcomes are values of random variables.

Example: A coin is spun 3 times, how many heads appear?
Denote the random variable associated with the number of heads by X. Denote the sample space by S_{X} then:

$$
S_{X}=\{0,1,2,3\}
$$

Discrete Probability Distributions

For a probability distribution $P\left(X=x_{i}\right)=p_{i}$:

- $0 \leq p_{i} \leq 1$
- All probabilities sum to 1 :
- $\sum_{i=1}^{n} p_{i}=1$ if X has n possible outcomes
- $\sum_{i=1}^{\infty} p_{i}=1$ if X has a countably infinite set of outcomes

Exercise

Write down the state space and probability distribution for the random variable X associated with the rolling of a six sided die.

Exercise

Write down the state space and probability distribution for the random variable X associated with the rolling of a six sided die.

$$
\begin{array}{c|cccccc}
S_{X}=\{1,2,3,4,5,6\} \\
x_{i} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline P\left(X=x_{i}\right) & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}
\end{array}
$$

Cumulative Distribution for Discrete Random Variables

For $P\left(X=x_{i}\right)=p_{i}$ the cumulative distribution $F(x)=P(X \leq x)$:

$$
F(x)=\sum_{i=1}^{x} P\left(X=x_{i}\right)
$$

Exercise

Write down the cumulative probability distribution for the random variable X associated with the rolling of a six sided dice.

Exercise

Write down the cumulative probability distribution for the random variable X associated with the rolling of a six sided dice.

x_{i}	1	2	3	4	5	6
$P\left(X=x_{i}\right)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
$F\left(x_{i}\right)$	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	1

Mean and Variance

Mean / Average / Expected Value:

$$
E(X)=\sum_{i=1}^{n} x_{i} p_{i}
$$

Variance:

$$
\operatorname{Var}(X)=\sum_{i=1}^{n}\left(x_{i}-E(X)\right)^{2} p_{i}
$$

Exercise

Calculate the mean and variance for the random variable X associated with the rolling of a six sided dice.

Exercise

Calculate the mean and variance for the random variable X associated with the rolling of a six sided dice.

Mean:

$$
\begin{aligned}
E(X) & =\frac{1}{6}+\frac{2}{6}+\frac{3}{6}+\frac{4}{6}+\frac{5}{6}+\frac{6}{6} \\
& =3.5
\end{aligned}
$$

Variance:

$$
\begin{aligned}
\operatorname{Var}(X) & =\frac{(1-3.5)^{2}}{6}+\frac{(2-3.5)^{2}}{6}+\frac{(3-3.5)^{2}}{6} \\
& +\frac{(4-3.5)^{2}}{6}+\frac{(5-3.5)^{2}}{6}+\frac{(6-3.5)^{2}}{6} \\
& \approx 2.9
\end{aligned}
$$

Continuous Random Variables

The random variable X is the time from $t=0$ until a light bulb fails. X is a continuous random variable, defined for the continuous variable $t \geq 0$, and is not a countable list of values.

Define a probability density function $f(x)$ over \mathbb{R} :

- $f(x) \geq 0$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- for any $x_{1}<x_{2}$:

$$
P\left(x_{1} \leq X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x
$$

Continuous CDF

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(u) d u
$$

Mean and Variance of Continuous Random Variables

Mean:

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

Variance:

$$
\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-E(X))^{2} f(x) d x
$$

Exercise

Find the mean of the negative exponential distribution:

$$
f(x)=\lambda e^{-\lambda x} \text { defined for } 0<x<\infty
$$

Solution

$$
\begin{aligned}
E(X) & =\int_{0}^{\infty} x f(x) d x \\
& =\lambda \int_{0}^{\infty} x e^{-\lambda x} d x \\
& =\lambda\left(u v-\int v d u\right)_{0}^{\infty} \\
& =\lambda\left[\frac{x}{\lambda} e^{-\lambda x}+\int \frac{1}{\lambda} e^{-\lambda x}\right]_{0}^{\infty} \\
& =\lambda\left[\frac{x}{\lambda} e^{-\lambda x}+\frac{1}{\lambda^{2}} e^{-\lambda x}\right]_{0}^{\infty} \\
& =\left[x e^{-\lambda x}+\frac{1}{\lambda} e^{-\lambda x}\right]_{0}^{\infty} \\
& =0-0-0+\frac{1}{\lambda}=\frac{1}{\lambda}
\end{aligned}
$$

Support Material

- https://intranet.cardiff.ac.uk/students/ your-study/study-skills/maths-support
- https://github.com/drvinceknight/MSc_week_0/wiki
- http://www.geraintianpalmer.org.uk/teaching/

