
3 - Organising Code PORS

Exercises 3

1. The class below gives information about triangles:

a) Use this to build objects representing the following triangles, and find their area and perimeters:

- b) Add a method that returns a Boolean indicating if a triangle is isoceles or not.
- c) By inheriting from the class above, create a class for equilateral triangles.
- d) Create a list of equilateral triangles of size lengths 1, 2, ..., 9, 10. By sorting the list appropriately, find the equilateral triangle whose perimeter is closest to its area.

3 - Organising Code PORS

2. Write a class that contains information about a line. It should take in a gradient m and y-intercept c, and should contain methods that:

- Finds a y given an x;
- Finds an x given a y;
- Defines a representation for the object as mx + c;
- Adds itself to another line;
- Finds the intersection between itself and another line.

Now for the lines $y_1 = 2x + 3$, $y_2 = -5x + 2$, and $y_3 = x$, find the intersection points of:

a) y_1 and y_2 ,

c) y_3 and y_1 ,

b) $(y_1 + y_2)$ and y_2 ,

d) $(y_1 + y_3)$ and $(y_2 + y_3)$.

3. Consider the class below:

```
>>> import math
>>> class ComplexNumber:
...    def __init__(self, re, im):
...         self.re = re
...         self.im = im
...         self.modulus = ((self.re ** 2) + (self.im ** 2)) ** 0.5
...         self.arg = math.atan(self.im / self.re)
```

Complete the class with the following methods:

- __repr__ to represent the complex number as z = a + bi;
- conjugate, returning its conjugate $\overline{z} = a bi$;
- inverse , returning its inverse $z^{-1} = \frac{a}{a^2+b^2} \frac{b}{a^2+b^2}i;$
- __add__ to add to complex numbers $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$;
- __mul__ to multiply to complex numbers $z_1z_2 = a_1a_2 b_1b_2 + (a_1b_2 + b_1a_2)i$.

Use this class to find, for $z_1 = 3 + 4i$, $z_2 = -7 - i$, and $z_3 = 6 + i$:

a)
$$z_1 + z_2$$

e)
$$\overline{z_2} + z_2^{-1}$$

b)
$$z_1 z_2 z_3$$

f)
$$|z_2 + z_3|$$

c)
$$\overline{z_2z_3}$$

g)
$$\arg z_1 + \arg z_3$$

d)
$$z_1^{-1}$$

h)
$$arg(z_1 + z_3)$$