Solutions to Problem Sheet 5

- 1. A toothpaste company can make two kinds of toothpaste:
 - 'Sure Smiles': a budget toothpaste that makes a profit of £1000 a tonne, and
 - 'Wicked Whites': a premium toothpaste that makes of profit of £8000 a tonne.

Two of the ingredients need to be imported and so their daily use is limited: only 12 kilograms of Calcium Carbonate can be used each day, and only 24 kilograms of Sodium Fluoride can be used each day.

- Each tonne of 'Sure Smiles' requires 3 kilograms of Sodium Fluoride and 1 kilogram of Calcium Carbonate.
- Each tonne of 'Wicked Whites' requires 1 kilogram of Sodium Fluoride and 2 kilograms of Calcium Carbonate.

Additionally, to ensure that there is enough budget toothpaste available to the population, the government has legislated that the company cannot produce more than 2 tonnes more of premium toothpaste than the budget toothpaste each day.

- (a) Using the graphical method, how many tonnes of each toothpaste should the company produce each day to maximise their daily profit?
- (b) If the government now legislates that the company can only make £1600 per tonne of 'Wicked Whites', how many tonnes of each toothpaste should the company produce each day to maximise their daily profit now?

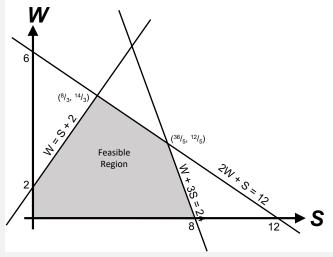
Solution 1 Let S be the number of tonnes of 'Sure Smiles' and W be the number of tonnes of 'Wicked Whites'. Then:

Maximise:

800W + 100S

subject to

$$W + 3S \le 24$$
$$2W + S \le 12$$
$$B \le A + 2$$
$$W, S \ge 0$$



(a) When the objective is £8000 W + £1000 S:

Point	Objective = 8000W + 1000S
(0,0)	0
(0, 2)	16,000
(8,0)	8,000
(8/3, 14/3)	40,000
(36/5, 12/5)	26,400

So
$$W = \frac{14}{3}$$
 and $S = \frac{8}{3}$.

(b) When the objective is £1600 W + £1000 S:

Point	Objective = 1600W + 1000S
(0,0)	0
(0, 2)	3,200
(8,0)	8,000
(8/3, 14/3)	10, 133.33
(36/5, 12/5)	11,040

So
$$W = \frac{12}{5}$$
 and $S = \frac{36}{5}$.

2. Use the Simplex method to solve the following Linear programming problem:

Maximise:

$$3x_1+5x_2$$
 subject to
$$-5x_1+17x_2 \leq 425$$

$$5x_1+4x_2 \leq 205$$

$$x_1,x_2 \geq 0$$

Solution 2 Setting up the initial Simplex tableau:

	x_1	x_2	s_1	s_2
425	-5	(17)	1	0
205	5	4	0	1
0	-3	-5	0	0

Choosing 17 as the pivot, we perform $\bar{r}_1=\frac{1}{17}r_1$, $r_2=r_2-4\bar{r}_1$, and $r_3=r_3+5\bar{r}_1$:

	x_1	x_2	s_1	s_2
25	-5/17	1	1/17	0
105	(105/17)	0	-4/17	1
125	-76/17	0	5/17	0

Choosing $^{105}/_{17}$ as the pivot, we perform $\bar{r}_2=\frac{17}{105}r_2$, $r_1=r_1+\frac{5}{17}\bar{r}_2$, and $r_3=r_3+\frac{76}{17}\bar{r}_1$:

		x_1	x_2	s_1	s_2
	30	0	1	$^{1}/_{21}$	$^{1}/_{21}$
	17	1	0	-4/105	$^{17}/_{105}$
Ī	201	0	0	13/105	$\frac{76}{105}$

Giving a solution of $x_1 = 17$, $x_2 = 30$, and a maximum objective value of $3x_1 + 5x_2 = 201$.

3. Consider the following linear programming problem:

Maximise:

subject to
$$x_1$$

$$x_1 - x_2 + 4x_3 \le 17$$
$$2x_1 + x_3 \le 6$$
$$2x_2 + 3x_3 \le 14$$
$$x_1, x_2, x_3 \ge 0$$

 $3x_1 + x_2 + 3x_3$

- (a) Use the Simplex method to find one optimal solution.
- (b) Pivot one more time to find all optimal solutions. Give your answer in the form $\{(1-t)\underline{\mathbf{a}}+t\underline{\mathbf{b}}\ \, \text{for all}\ \, t\in[0,1]\}.$
- (c) If we fix $x_3=1$, find the values that x_1 and x_2 must take for the solution to remain optimal.

Solution 3 We have:

(a) Setting up the initial Simplex tableau:

	x_1	x_2	x_3	s_1	s_2	s_3
17	1					
6	(2)	0	1	0	1	0
14	0		3			1
0	-3	-1	-3	0	0	0

Choosing 2 as the pivot, we perform $\bar{r}_2 = \frac{1}{2}r_2$, $r_1 = r_1 - \bar{r}_2$, $r_3 = r_3$, and $r_4 = r_4 + 3\bar{r}_2$:

	x_1	x_2	x_3		s_2	s_3
14	0	-1	(7/2)	1	-1/2	0
3	1	0	1/2	0	$1/_{2}$	0
14	0	2	3	0	0	1
9	0	-1	-3/2	0	3/2	0

Choosing $^7/_2$ as the pivot, we perform $\bar{r}_1=\frac{2}{7}r_1$, $r_2=r_2-\frac{1}{2}\bar{r}_1$, $r_3=r_3-3\bar{r}_1$, and $r_4=r_4+\frac{3}{2}\bar{r}_1$:

	x_1	x_2	x_3	s_1	s_2	s_3
4	0	-2/7	1	$^{2}/_{7}$	-1/7	0
1	1	$\frac{1}{7}$	0	-1/7	$^{4}/_{7}$	0
2	0	20/7	0	-6/7	-3/7	1
	0	-10/7	0	$3/_{7}$	9/7	0

Choosing $^{20}/7$ as the pivot, we perform $\bar{r}_3=\frac{7}{20}r_3$, $r_1=r_1-\frac{1}{10}r_3$, $r_2=r_2-\frac{1}{20}r_3$, and $r_4=r_4+\frac{1}{2}r_3$:

	x_1	x_2	x_3	s_1	s_2	s_3
21/5	0	0	1	$1/_{5}$	$-\frac{13}{70}$	1/10
9/10	1	0	0	-1/10	$^{11}/_{20}$	-1/20
$^{7}/_{10}$	0	1	0	-3/10	-3/20	-7/20
16	0	0	0	0	15/14	$1/_{2}$

And so an optimal solution is $x_1 = \frac{9}{10}$, $x_2 = \frac{7}{10}$, and $x_3 = \frac{21}{5}$, giving an objective function value of 16.

(b) As there is a non-basic variable with a zero in the objective row (s_1) , we pivot one more time on $^1/_5$. Choosing $\bar{r}_1=5r_1$, $r_2=r_2+\frac{1}{2}r_1$, $r_3=r_3+\frac{3}{2}r_1$, and $r_4=r_4$:

	x_1	x_2	x_3	s_1	s_2	s_3
21	0	0	5	1	-13/14	$\frac{1}{2}$
3	1	0	$1/_{2}$	0	5/28	$^{3}/_{20}$
7	0	1	3/2	0	$-\frac{13}{14}$	$^{1}/_{2}$
16	0	0	0	0	15/14	1/2

And so another optimal solution is $x_1 = 3$, $x_2 = 7$, and $x_3 = 21$.

We then write all optimal solutions in the form:

$$\left\{ (1-t) \left(\frac{9}{10}, \frac{7}{10}, \frac{21}{5} \right) + t \left(3, 7, 0 \right) \ \ \, \text{for all} \ \, t \in [0,1] \right\}$$

Solution 3 (continuing from p. 4) (c) Fixing $x_3 = 1$ corresponds to setting $t = {16/21}$, this gives:

$$x_{1}, x_{2}, x_{3} = \left(1 - \frac{16}{21}\right) \left(\frac{9}{10}, \frac{7}{10}, \frac{21}{5}\right) + \frac{16}{21}(3, 7, 0)$$

$$x_{1}, x_{2}, x_{3} = \frac{5}{21} \left(\frac{9}{10}, \frac{7}{10}, \frac{21}{5}\right) + \frac{16}{21}(3, 7, 0)$$

$$= \left(\frac{45}{210}, \frac{35}{210}, 1\right) + \left(\frac{48}{21}, \frac{112}{21}, 0\right)$$

$$= \left(\frac{525}{210}, \frac{1155}{210}, 1\right)$$

$$= \left(\frac{5}{2}, \frac{11}{2}, 1\right)$$

And so the optimal solution would now be $x_1 = 5/2$, $x_2 = 11/2$, and $x_3 = 1$.

4. Solve the following linear programming problem using the two-phase method:

Maximise:

subject to

$$2x_1 + 3x_2 + 4x_3$$

$$3x_1 + 2x_2 + x_3 < 10$$

$$2x_1 + 3x_2 + 3x_3 < 15$$

$$x_1 + x_2 - x_3 > 4$$

$$x_1, x_2, x_3 > 0$$

Solution 4 Re-writing the constraints using slack and artificial variables, we get:

$$3x_1 + 2x_2 + x_3 + s_1 = 10$$

$$2x_1 + 3x_2 + 3x_3 + s_2 = 15$$

$$x_1 + x_2 - x_3 - s_3 + a_1 = 4$$

and so the first phase is to minimise $a_1 - 4 = -x_1 - x_2 + x_3 + s_3$.

Solution 4	(continuing	from	p. 5)	Writing :	the	tableau į	gives:
------------	-------------	------	-------	-----------	-----	-----------	--------

	x_1	x_2	x_3	s_1	s_2	s_3	a_1
10	(3)	2	1	1	0	0	0
15	2	3	3	0	1	0	0
4	1		-1		0	-1	1
 0	-2	-3	-4	0	0	0	0
-4	-1	-1	1	0	0	1	0

Choosing 3 as the pivot, we perform $\bar{r}_1 = \frac{1}{3}r_1$, $r_2 = r_2 - 2\bar{r}_1$, $r_3 = r_3 - \bar{r}_1$, $r_4 = r_4 + 2\bar{r}_1$, and $r_5 = r_5 + \bar{r}_1$:

	x_1	x_2	x_3	s_1	s_2	s_3	a_1
10/3	1	$^{2}/_{3}$	1/3	1/3	0	0	0
$^{25}/_{3}$	0	$\frac{5}{3}$	$7/_{3}$	$-\frac{2}{3}$	1	0	0
$^{2}/_{3}$	0	1/3	-4/3	-1/3	0	-1	1
$\frac{20}{3}$	0	$-\frac{5}{3}$	-10/3	2/3	0	0	0
$-\frac{2}{3}$	0	-1/3	$\frac{4}{3}$	1/3	0	1	0

Choosing $^1/_3$ as the pivot, we perform $\bar{r}_3=3r_3$, $r_1=r_1-2r_3$, $r_2=r_2-5r_3$, $r_4=r_4+5r_3$, and $r_5=r_5+r_3$:

	x_1	x_2	x_3	s_1	s_2	s_3	a_1
2	1	0	3	1	0	2	-2
5	0	0	9	1	1	5	-5
2	0	1	-4	-1	0	-3	3
10	0	0	-10	-1	0	-5	5
0	0	0	0	0	0	0	1

This ends the first phase. Deleting the appropriate columns and rows gives:

		x_1	x_2	x_3	s_1	s_2	s_3
	2	1	0		1		
	5	0	0	9	1	1	5
	2	0	1	-4	-1	0	-3
•	10	0	0	-10	-1	0	-5

Choosing 9 as the pivot, we perform $\bar{r}_2 = \frac{1}{9}r_2$, $r_1 = r_1 - 3\bar{r}_2$, $r_3 = r_3 + 4\bar{r}_2$, and $r_4 = r_4 + 10\bar{r}_2$:

	x_1	x_2	x_3	s_1	s_2	s_3
$\frac{1}{3}$	1	0	0	$^{2}/_{3}$	-1/3	1/3
5/9	0	0	1	1/9	1/9	$^{5}/_{9}$
38/9	0	1	0	-5/9	$\frac{4}{9}$	-7/9
140/9	0	0	0	1/9	10/9	5/9

And so the optimal solution is $x_1=1/3$, $x_2=38/9$, and $x_3=5/9$, giving a maximum value of the objective function of 140/9.

5. Cardiff University needs to create its exam timetable. It has a set M of exams (indexed by m) to schedule. For each pair of exams i, j, it has an indicator C_{ij} that is set to 1 if the modules cannot be scheduled at the same time (due to sharing students), and 0 if they can be scheduled at the same time. Let T be the set of time slots available, indexed by t. Formulate an linear programming problem that finds a feasible schedule using the least time slots.

You are not asked to solve the linear programming problem!

Solution 5 Define X_{mt} as a binary variable indicating if module $m \in M$ is scheduled at time $t \in T$. Define Y_t as the binary variable indicating if there is an exam on day $t \in T$. Then a possible formulation would be:

Minimise:

$$\sum_{t \in T} Y_t$$

subject to

$$\sum_{t \in T} X_{mt} = 1 \ \forall \ m \in M$$

$$|M|Y_t \geq \sum_{m \in M} X_{mt} \ \forall \ t \in T$$

$$C_{ij} \left(X_{it} + X_{jt}\right) \leq 1 \ \forall \ t \in T \ \forall \ i,j \in M$$

$$X_{mt}, Y_t \ \textit{is binary} \ \forall \ t \in T \ \forall \ m \in M$$