# Assessing a Preliminary Year Data Literacy Module 

 MA0004 - Preliminary Mathematics IIDr. Geraint Palmer

November 14, 2019

## Module Aims

```
9,
```

Americans more likely to die from opioid overdose than in a car accident

## OY ABhLY wech

f 5 F

Daily Mirror
22 December at $1: 45 \mathrm{pm}$.
You've been warned $=\bullet$

(6) DAILY MIRROR - 1-MIN READ

If someone drinks their coffee black, they're more likely to be a psychopath

## Nine out of 10 online CVs reveal multiple spelling errors

## By Elliott Kime

THE majority of CVs contain basic spelling and grammar errors, a largescale study has revealed, with the most common blunder being unnecessary apostrophes added to "GCSEs."
A review of $20,000 \mathrm{CV}$ submitted online found that nine in 10 of them had misspelt words, with only 1,134 fault free. Five or more errors were discovered in 12,666 of those looked at.

(1)
Quite Interesting eqikipedia - Jan 12
A third of the alcohol sold in England is drunk by around 4\% of the population.
(-) 118
†7 498
() 2.9 K曰
(i)

Quite Interesting ©qilicpedia - Jan 12
Research published in the medical journal Neurology has found that people with more excess fat around their middle appear to have a shrunken brain and less grey matter.

Association of body mass index and waist-to-hip ra..
Objective To examine the association of body mass index (BMI) and waist-to-hip ratio (WHR) with brain volume. Methods We used cross-sectional data from. n.neurology.org

## Course Contents



## Class Demographics

Foundation year biomed, biochem, medicine, chemistry, and dentistry students


## Group Coursework (15\%)

- Explore data
- Create of a piece of data literature
- Begin to develop "data wisdom"
- Group work \& organisation
- Freedom to investigate topics outside of taught content


## Exam (85\%)

- Read data literature
- Some conceptual questions
- Rote probability questions
- Hypothesis tests by hand

3. Consider the three data sets, 1,2 and 3 , shown in the histograms below:

(i) Match the following standard deviations to the data sets: $\sigma_{A}=10, \sigma_{B}=0.2$, $\sigma_{C}=75$.
(ii) Which data set has the greatest range?
(iii) For each data set, give the most appropriate measure of centrality, and explain why.
4. Six people were chosen at random to trial a new performance enhancing drug. They were asked to run 200 m , once before taking the drug, and then again after taking the drug. The table below gives the times of the six runners:

| Person | Speed Before | Speed After |
| ---: | ---: | ---: |
| 1 | 43 s | 40 s |
| 2 | 48 s | 38 s |
| 3 | 45 s | 46 s |
| 4 | 43 s | 37 s |
| 5 | 44 s | 38 s |
| 6 | 40 s | 33 s |

(a) Draw a box and whisker plot for each of the speeds before and after taking the drug, clearly labelling the first quartile, median, and third quartile.
(b) Use an appropriate data visualisation to show the relationship between the speeds before and after taking the drug. Is there a positive, negative, or no relationship?
(c) Use an appropriate hypothesis test to investigate whether the drug has lowered the speed at which the runners can run 200 m .

- State the null and alternative hypothesis.
- Choose a confidence level and carry out the test.
- State all conclusions.




## Question

15. Overall, I am satisfied with the quality of the module.
$0 \%$
\% N/A
(raw)
\% Agree (valid NSS)

50\%
3.22

## GAISE Report

1. Teach statistical thinking.

- Teach statistics as an investigative process of problem-solving and decision-making.
- Give students experience with multivariable thinking.

2. Focus on conceptual understanding.
3. Integrate real data with a context and purpose.
4. Foster active learning.
5. Use technology to explore concepts and analyze data.
6. Use assessments to improve and evaluate student learning.
https://www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege_Full.pdf

## Individual CW (50\%)

- Read data literature
- Create a piece of data literature
- Apply probablistic ideas
- Connect theory and practise


## Group CW (50\%)

- Explor data
- Create of a piece of data literature
- Develop "data wisdom"
- Group work \& organisation
- Encouraged to investigate topics outside of taught content


## Option A

You have the following items: a pack of cards, coins, 6, 8, 10 and 12 sided die, and a roulette wheel. Invent a casino game and write a report selling this game to a casino.
You should include:

- a detailed description of the game
- all probabilities involved
- PDFs and CDFs of game outcomes
- expected winnings and reccommendations for prizes and charges

The casino is more likely to buy games that will make them a profit, whilst still being attractive to customers.

## Option B

Your boss was supposed to attend a presentation on homelessness, but was unable to attend. They managed to obtain the presentation slides, and have asked you to write a one page report summarising the key points of the presentation. You should comment on:

- intetesting summary statistics
- significant relationships between variables
- extreme or unusual observations
- general trends

Ensure your writing is clear and accurate, referencing specific slide numbers and plots when discussing each finding.

## Option C

Write a report on the "birthday paradox". It must include:

- a description of the problem and any assumptions
- a mathematical explanation of its solution

Then extend the problem in some way, for example:

- find some data and perform analyses on it - does this support the statement of the paradox?
- how does it apply to real life, e.g. sports teams or film casts - find data to support this
- change the problem, e.g. born in the same month / day of week


## Group Coursework

Write a data analysis report on the following data, taken as a sample.

|  | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Triage Category | Gender | Age | Length of Stay | Weight on Admission | Weight on Discharge | Ambulance |
| 2 | 2 | M | 72 | 2.5 | 82.25 | 79.21 | FALSE |
| 3 | 2 | M | 72 | 2 | 81.09 | 79.06 | FALSE |
| 4 | 1 | M | 87 | 3 | 81.78 | 78.91 | FALSE |
| 5 | 3 | M | 89 | 6.5 | 81.29 | 80.12 | TRUE |
| 6 | 4 | M | 96 | 15.5 | 75.17 | 72.81 | FALSE |
| 7 | 2 | M | 58 | 8 | 78.92 | 76.81 | FALSE |
| 8 | 3 | F | 97 | 1.5 | 74.26 | 74.43 | TRUE |
| 9 | 5 | F | 71 | 6.5 | 68.67 | 67.67 | TRUE |
| 10 | 4 | F | 91 | 2.5 | 72.12 | 72.56 | FALSE |
| 11 | 4 | F | 65 | 6.5 | 67.53 | 68.01 | FALSE |

The report should highlight, with evidence, any interesting and useful insights the data set could offer. Evidence includes appropriate comments or measures of centrality, spread, and shape, appropriate data visualisations, and hypothesis tests.

| Week | Session | Activity |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Monday (1 hour) | Introduction |  |  |  |
|  | Tuesday (2 hours) | Epidemiology activity |  |  |  |
| 2 | Monday (1 hour) | Sets lesson |  |  |  |
|  | Tuesday (2 hours) | T/F | Sets activity | Sets tutorial |  |
| 3 | Monday (1 hour) | Probability lesson |  |  |  |
|  | Tuesday (2 hours) | T/F | Probability activity | Probability tutorial |  |
| 4 | Monday (1 hour) | Conditional probability lesson |  |  |  |
|  | Tuesday (2 hours) | T/F | Assessment workshop (assessment 1) |  |  |
| 5 | Monday (1 hour) | Data lesson |  |  |  |
|  | Tuesday (2 hours) | T/F | Module feedback | Data tutorial |  |
| 6 | Monday (1 hour) | Data visualisation lesson |  |  |  |
|  | Tuesday (2 hours) | T/F | Data viz activity | Data viz tutorial |  |
| 7 | Monday (1 hour) | Distributions lesson |  |  |  |
|  | Tuesday (2 hours) | T/F | Critique data analysis reports |  | Assessment 1 hand in date |
| 8 | Monday (1 hour) | Stats tests lesson ( $\chi^{2}$-test) |  |  |  |
|  | Tuesday (2 hours) | T/F | Assessment works | op (assessment 2) |  |
| 9 | Monday (1 hour) | Stats tests lesson ( $t$-tests etc.) |  |  |  |
|  | Tuesday (2 hours) | T/F | Stats tests activity | Stats tests tutorial |  |
| 10 | Monday (1 hour) | Data pitfalls video discussion |  |  |  |
|  | Tuesday (2 hours) | T/F | Assessment works | op (assessment 2) |  |
| 11 | Monday (1 hour) | Slack |  |  |  |
|  | Tuesday (2 hours) | Assessment workshop (assessment 2) |  |  |  |
| GSW | Monday (1 hour) | Slack |  |  |  |
|  | Tuesday (2 hours) | Slack |  |  | Assessment 2 hand in date |

## Worries / Places to Improve

| Question | $\%$ N/A <br> (raw) | \% Agree <br> (valid NSS) | Avg <br> Score(Stats) |
| :--- | :---: | :---: | :---: |
| 12. I have felt part of a community of staff and students whilst undertaking this   <br> module. $0 \%$ $39 \%$ |  |  |  |

- self-selecting / assigned groups?
- regular reporting on projects?
- fair division of marks?
- communication under low attendance?
- use of electronic quiz software?
- class size / split?

