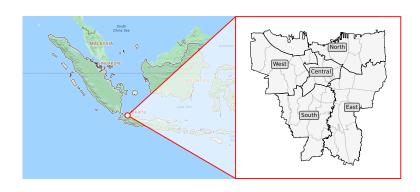
Evaluating Heterogeneous Ambulance Fleet Allocations in Jakarta

Geraint Palmer, Mark Tuson, Sarie Brice, Paul Harper, Vincent Knight, Leanne Smith, and Daniel Gartner

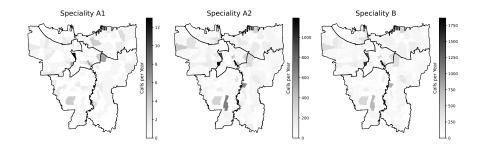
> www.geraintianpalmer.org.uk @GeraintPalmer

> > ORAHS, Graz 2023

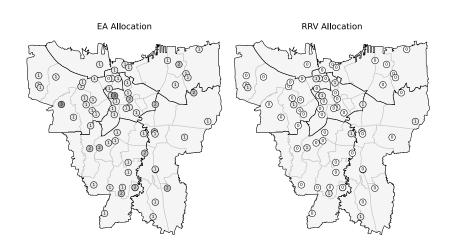


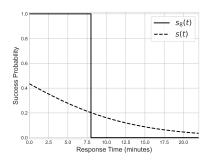
Jakarta, Indonesia

Jakarta, Indonesia

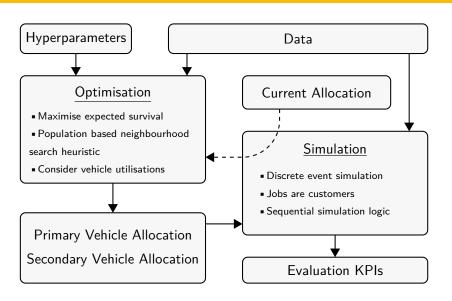


Jakarta, Indonesia


The Problem

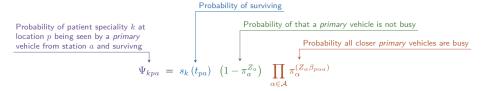

The Problem

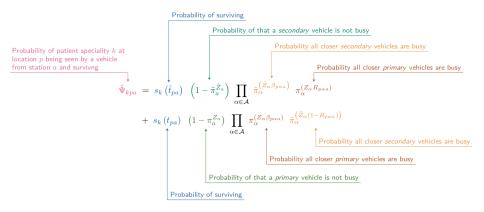
The Problem


Survival Functions


$$s(t) = (1 + e^{0.26 + 0.139t})^{-1}$$

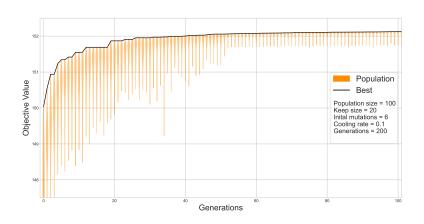
$$s_L(t) = \begin{cases} 1 & \text{if } 0 \le t \le L \\ 0 & \text{if } t > L \end{cases}$$


Plan: Optimisation & Simulation

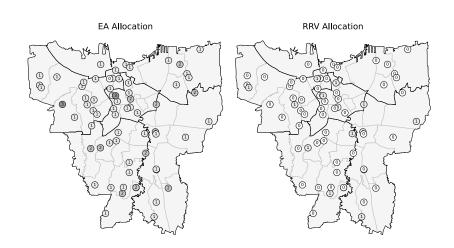


MESLMHPHF

Expected number of patients surviving, given allocations Z_a and \tilde{Z}_a



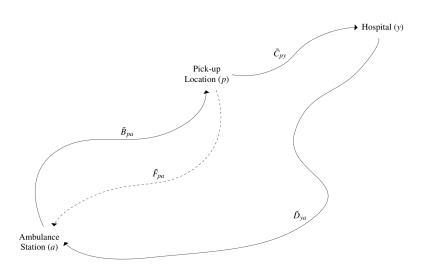
Utilisations


$$\lambda_{a} = \sum_{p \in \mathscr{P}} \sum_{k \in \mathscr{K}} \lambda_{pk} \left(1 - \left(\frac{\lambda_{a}}{\mu} \right)^{Z_{a}} \right) \prod_{\alpha \in \mathscr{A}} \left(\frac{\lambda_{\alpha}}{\mu} \right)^{(Z_{\alpha}\beta_{p\alpha a})}$$

$$\tilde{\lambda}_{a} = \sum_{p \in \mathscr{P}} \sum_{k \in \mathscr{K}_{A}} \lambda_{pk} \left(1 - \left(\frac{\tilde{\lambda}_{a}}{\tilde{\mu}} \right)^{\tilde{Z}_{a}} \right) \prod_{\alpha \in \mathscr{A}} \pi_{\alpha}^{(Z_{\alpha}R_{p\alpha a})} \left(\frac{\tilde{\lambda}_{\alpha}}{\tilde{\mu}} \right)^{(\tilde{Z}_{\alpha}\beta_{p\alpha a})}$$

Heuristic

Optimised Allocation



Simulation

- Customers are ambulance jobs
- Ambulances are servers
- Jobs routed to closest ambulance
- Sequential logic for secondary vehicles

Simulated Routes

Current vs Optimised

Allocation	Baseline	Improved
Ambulance Utilisation	28.30%	28.37%
RRV Utilisation	20.43%	16.67%
Mean Response Time (mins)	17.67	17.83
Percent Abandoned	0%	0%
Expected Survival	98.34%	99.75%

Summary & Future Work

- MESLMHPHF objective function
- Considers utilisations
- Simulation model
- Consider demand scenarios
- Consider vehicle numbers
- Location dependent μ 's
- Replicate work with Welsh Ambulance Trust

Evaluating Heterogeneous Ambulance Fleet Allocations in Jakarta

Geraint Palmer, Mark Tuson, Sarie Brice, Paul Harper, Vincent Knight, Leanne Smith, and Daniel Gartner

> www.geraintianpalmer.org.uk @GeraintPalmer

> > ORAHS, Graz 2023

