
Emergent Behaviour in Stochastic Queueing
Systems

Vincent Knight, Geraint Palmer, & Thomas Watson

28th November 2024



Overview

i. Motivation - Abacws

ii. Background to game theory & emergent behaviour

iii. Discrete Event Simulation

iv. Discrete Event Population Updates

v. Recovering known results

vi. Abacws jockeying scenario



Motivation & Inspiration
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s = (π = (3, 1, 2, 1), j = (0.5, 1.2, 0.4, 3.3))

Corresponds to:

• First queue at node 3, and wait a maximum of 0.5 time units;

• If still waiting after for service 0.5 time units, jockey to node 1, and wait a
maximum of 1.2 time units;

• If still waiting after for service 1.2 time units, jockey to node 2, and wait a
maximum of 0.4 time units;

• If still waiting after for service 0.4 time units, jockey to node 1, and wait a
maximum of 3.3 time units;

• If still waiting after for service 3.3 time units, renege from the system.



Fitness of a Strategy

fs = e−κE(C) = e

−κ

E(L)β +
K∑

k=0

(E(Wπk ) + E(Tπk ))



Where:

• κ is the selection intensity,

• L is a binary variable indicating if the customer was lost,

• βN+1 is the cost of being lost,

• βπk is the cost of being served at πk ,

• Wπk is the waiting time at node πk ,

• Tπk = εgπk + βπk service time plus cost of service at node πk ,
if they were served there, 0 otherwise.



Travel Times between Service Centres

c1 = 2, c2 = 5

• s1 = ((1, 2), (5, 5))

• s2 = ((2, 1), (6, 8))

• s3 = ((2, 1, 2), (4, 3, 3))

T =

(
0 10
7 0

)

c1 = 2, c2 = 5, c3 = 0

• s1 = ((1, 3, 2), (5, 10, 5))

• s2 = ((2, 3, 1), (6, 7, 8))

• s3 = ((2, 3, 1, 3, 2), (4, 7, 3, 10, 3))
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Example of a Game - Pigou’s Routing Game

A B

c1(x) = 1

c2(x) = x

x = proportion taking the shortcut



Social (overall) Optimum

Strategy x̂ that minimises the sum of everyone’s travel times:

x̂ = arg min
x

(1− x)c1(x) + xc2(x)

= arg min
x

x2 − x + 1

=
1

2

Selfish Equilibrium

Strategy x? that causes no reason to move, when travel times are
equal:

c1(x?) = c2(x?)

1 = x?
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Example of a Game - Stag Hunt
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(8, 1) (5, 5)

(10, 10) (1, 8)



Replicator Dynamics

If there is a population of players, with proportion xs playing
strategy s, all playing against each other, then:

dxs
dt

= xs (fs − φ) for all s ∈ S

where φ =
∑
s∈S

xs fs is the population’s average fitness.

A stable population is when dxs
dt = 0 for all s ∈ S .



Replicator Dynamics - Stag Hunt

Proportion of stag hunters = y , Proportion of hare hungers = 1− y

fstag = (10)(y) + (1)(1− y) = 9y + 1

fhare = (1)(y) + (5)(1− y) = −4y + 5

φ = yfstag + (1− y)fhare

= y(9y + 1) + (1− y)(−4y + 5)

= 13y2 − 8y + 5

dy

dt
= y(fstag − φ)

= y
(
(9y + 1)− (13y2 − 8y + 5)

)
= −13y3 + 17y2 − 4y

y = 0, y =
4

13
, y = 1



Numerical Methods

e.g. Euler method:

yt+1 = yt +
dy

dt
∆t
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Discrete Event Simulation
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Ciw

>>> import ciw

>>> N = ciw.create_network(

... arrival_distributions=[ciw.dists.Exponential(5)],

... service_distributions=[ciw.dists.Exponential(2)],

... number_of_servers=[4]

... )

>>> ciw.seed(0)

>>> Q = ciw.Simulation(N)

>>> Q.simulate_until_max_time(1000)

>>> recs = Q.get_all_records()

>>> waits = [r.waiting_time for r in recs if r.arrival_date > 100]

>>> sum(waits) / len(waits)

0.0957353996505342



Numerical Method with Discrete Event Simulation

Find fitness
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Jockeying example:
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Numerical Method with Discrete Event Simulation
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DEPU - Discrete Event Population Updates
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Naor (1969)

µn?Λ

β

W

Emergent strategy: n = βµ



Numerical Method + Simulation
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Applying DEPU

• Λ = 32,

• c1 = 1, c2 = 3, c3 = 1,

• µ1 = 4, µ2 = 8,
µ3 = 12,

• β1 = β2 = β3 = 0,

• β4 = 5,

• ε = 0,

• κ = 0.2,

• s1 = ((1, 2, 3), (1, 1, 1),

• s2 = ((1, 2, 3), (2, 2, 2),

• s3 = ((3, 2, 1), (1, 1, 1),

• s4 = ((3, 2, 1), (2, 2, 2),

• ∆t = 0.01,
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Effect of Parameters
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Next steps...

• Investigate other update rules

• Incorporate variability in fitness function


