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s=(rm=(3,1,2,1), j=(0.5,1.2,0.4,3.3))

Corresponds to:

First queue at node 3, and wait a maximum of 0.5 time units;

If still waiting after for service 0.5 time units, jockey to node 1, and wait a
maximum of 1.2 time units;

If still waiting after for service 1.2 time units, jockey to node 2, and wait a
maximum of 0.4 time units;

If still waiting after for service 0.4 time units, jockey to node 1, and wait a
maximum of 3.3 time units;

If still waiting after for service 3.3 time units, renege from the system.



Fitness of a Strategy
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Where:
® « is the selection intensity,
® [ is a binary variable indicating if the customer was lost,
® (a1 is the cost of being lost,
® (3., is the cost of being served at 7y,
® Wy, is the waiting time at node 7y,

® T, = €gr, + Br, service time plus cost of service at node 7y,
if they were served there, 0 otherwise.



C1=2, C2=5 C1=27 C2=5, C3=O

® 5 = ((1,2),(5,5)) ® 5 = ((1v372)>(5a 1075))
* 5 =((2,1),(6,8)) * 5 =1((2,3,1),(6,7,8))
* s53=1((2,1,2),(4,3,3)) * s3=((2,3,1,3,2),(4,7,3,10,3))
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C1(X) =1

x = proportion taking the shortcut



Social (overall) Optimum

Strategy X that minimises the sum of everyone's travel times:
X =argmin (1 — x)c1(x) + xc2(x)
X

= arg min x2—x+1
X
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Strategy X that minimises the sum of everyone's travel times:
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Selfish Equilibrium

Strategy x* that causes no reason to move, when travel times are
equal:

Cl(X*) = CQ(X*)

1=x*



Column Player

Stag Hare

Stag (10, 10) (1, 8)

Row Player

Hoe | (8, 1) (5, 5)




Replicator Dynamics

If there is a population of players, with proportion xs playing
strategy s, all playing against each other, then:

dxs

” =xs(fs—¢) forallseS

where ¢ = szfs is the population’s average fitness.
seS

dxs _

A stable population is when T2 =0 for all s € S.



Proportion of stag hunters = y, Proportion of hare hungers =1 — y

fiag = (10)(y) + ()1 —y) =9y +1
fhare = (1)(y) + (5)(1 - y) =—4y +5

d) = yfstag + (1 _y)ﬁiare
=y(9y+1)+ (1 —y)(—4y +5)
=13y -8y +5

dy
pre V(fstag — @)

=y ((9y +1) — (13> — 8y +5))
=—13y3 +17y% — 4y



e.g. Euler method:
Yev1 =Yt + - At
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>>> import ciw

>>> N = ciw.create_network(
arrival_distributions=[ciw.dists.Exponential(5)],
service_distributions=[ciw.dists.Exponential(2)],
number_of _servers=[4]

)

>>> ciw.seed(0)

>>> Q = ciw.Simulation(N)

>>> Q.simulate_until_max_time(1000)

>>> recs = Q.get_all_records()

>>> waits = [r.waiting_time for r in recs if r.arrival_date > 100]

>>> sum(waits) / len(waits)

0.0957353996505342




Find fitness
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Jockeying example:

X

X=(0.5259,0.4741)
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Update Population

Any more
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fsit1 < (L—a)fs;+af”
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A > n? > @4* w

Emergent strategy: n= Su



Numerical Method + Simulation DEPU
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A =32,
aq=10=3c¢g=1

p1 =4 pp =8,
m3 =12,

B1=P2=pB3=0,

Ba =5,

€e=0,

k =0.2,

s =((1,2,3),(1,1,1),
5 =((1,2,3),(2,2,2),
s3=((3,2,1),(1,1,1),
s4 =1((3,2,1),(2,2,2),
At = 0.01,

a =0.1,

Xs
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® Investigate other update rules

® Incorporate variability in fitness function



